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Symmetry

* Symmetry has proven, from time and again, to be of fundamental
importance for describing Nature.

* In recent years, there has been a revolution in our understanding of
global symmetries.

* The notion of global symmetry has been generalized in different
directions.

* These generalized global symmetries are some of the few universally
applicable tools to analyze general quantum systems, not limited to
supersymmetric or solvable models.



Generalized global symmetries

* These new symmetries lead to several surprising consequences:
e generalized ‘t Hooft anomaly matching conditions
* new implications for the phase diagram of gauge theories
* new organizing principles of topological phases in condensed matter
physics
* new insights into naturalness problems

* Active collaboration between experts from high energy physics, condensed
matter physics, quantum gravity, and mathematics.

* |n this talk I'll discuss only some of these developments. Please see the
white paper for more references. | apologize in advance for the variety of
fascinating papers that are not discussed below.



Many other generalizations of global
symmetries not discussed here, e.g. dipole
symmetry, asymptotic symmetry,...

Generalizations

#b Higher-form symmetries

e.g. center symmetry in gauge theory

@
Subsystem symmetries Non-invertible symmetries
e.g. fractons e.g. Ising model, 4d Maxwell theory, QED, QCD...
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Symmetry and topology

e Consider a QFT in d-spacetime dimensions with a conserved Noether current
dj* = 0. We can definea (d — 1)-form J, ..., . = €, ... j".

* The conserved U(1) symmetry operator is

Ug = exp(if f d%1x j%) = exp(i6 j d*1x J1..(a-1))

* For a relativistic QFT, the time direction is on the same footing as any other
spatial direction [Einstein 1905]. We can therefore integrate the current on a
general closed (d — 1)-manifold M in d-dimensional Euclidean spacetime:

Ug(M) = exp(if fM N

* The conservation equation d;Ug = 0 is now upgraded to the fact that Ug (M)
depends on M only topologically (divergence theorem).




Ordinary global symmetry

Properties of Ordinary symmetry Example: U(1)
(d-1)
symmetry op. Ug(M ) exp(i@f J(@-1)y
Mm(d-1)

Codimension 1 J@Disad — 1-form

in spacetime

Topological yes J@=D s closed, dJ4~D = (

Fusion rule group U(1l)

Ug1 ng — Ug1gz U91 U92 — U91+92

Next, we generalize the ordinary global symmetry by modifying t
above conditions.
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Generalized global symmetries

Properties of Ordinary
symmetry op. symmetry

Codimension 1
in spacetime

Topological yes

Fusion rule group
g1xX92 = 93




Higher-form Symmetry



Global symmetries and generalizations

Properties of Ordinary Higher-form Subsystem Non-invertible
symmetry op. | symmetry symmetry symmetry operator
Codimension 1 > 1 > 1 =1

in spacetime

Topological yes yes not completely yes

but conserved in time
Fusion rule group group group category
Ji1X92 =93 | 91X92 =93 | 91X92 = g3 DxDT # 1




Higher-form symmetries and anomalies
[Gaiotto-Kapustin-Seiberg-Willett 2014, ...]

* The simplest example of higher-form symmetries is the one-form center
symmetry in gauge theory. E.g. Zy center symmetry in SU(N) Yang-Mills
theory. It acts on the Wilson lines, rather than the local operators.

* Higher-form global symmetries can have anomalies, which prevent us from
gauging them. These anomalies lead to generalized ‘t Hooft anomaly
matching conditions. Nontrivial constraints on renormalization group flows.

* E.g. SU(2) pure gauge theory at 8 = m has a mixed anomaly between CP
and the Z, one-form center symmetry. The low energy phase cannot be
trivially gapped with a non-degenerate ground state. (Contrast with the
expectation at 8 = 0.) [Gaiotto-Kapustin-Komargodski-Seiberg 2017]



Higher-groups

* Higher-group symmetry: mixture of higher-form symmetries of
different degrees [Kapustin-Thorngren 2013, Tachikawa 2017, Cordova-Dumitrescu-
Intriligator 2018-2020, Benini-Cordova-Hsin 2018,...]. Analogous to group extensions.

* Higher-groups exist in many quantum systems in diverse dimensions:
2+1d Chern-Simons matter theories, 3+1d gauge theories, 5+1d
supersymmetric theories...

 Dynamical consequences. E.g. Constraints on the 3+1d axion-Yang-
Mills theory [Hidaka-Nitta-Yokokura 2020-2021, Brennan-Cordova 2020].
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Subsystem Symmetry



Generalized global symmetries

Properties of Ordinary Higher-form Subsystem Non-invertible
symmetry op. symmetry symmetry symmetry symmetry
Codimension 1 > 1 > 1 =1

in spacetime

Topological yes yes not completely yes

but conserved in time
Fusion rule group group group category
Ji1X92 =93 | 91X92 =93 | 91X92 = g3 DxDT # 1
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Subsystem symmetry

* There are many interesting lattice models, such as
fractons, exhibiting subsystem symmetries.

* The subsystem symmetry charges are supported on certain
higher-codimensional manifolds L in space (E.g. straight lines
on a plane) [..., Paramekanti-Balent-Fisher 2002, ...]. They depend NOT
only on the topology of the manifolds.

* The number of subsystem symmetry charges generally
depends on the number of lattice points.

* Low energy observables are sensitive to short distance
details: UV/|R mixing [Seiberg-Shao 2020, Gorantla-Lam-Seiberg-SHS
2021].

Q*(x)

Q¥ (y)
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Fractons

* Fractons [chamon 05, Haah ‘11, Vijay-Haah-Fu ‘16..] @re a large class of 3+1d gapped lattice
spin models with many peculiar features. Large ground state degeneracy
~ 2%L where L is the number of lattice sites in every direction, reflecting
UV/IR mixing.

* Many fracton models have subsystem symmetries, in which case the
peculiarities are universally captured by the symmetries and their
anomalies [Seiberg-SHS ‘20, Burnell-Devakul-Gorantla-Lam-SHS ‘21] — Generalized Landau

paradigm.

* Fractons do not admit a conventional continuum field theory limit.
Progress in extending the framework of QFT to incorporate these new

phases of matter. Higher-rank gauge theory of subsystem symmetries [pretko

2016x2, Slagle-Kim ‘17, Bulmash-Barkeshli ‘18, Ma-Hermele-Chen ‘18, You-Devakul-Sondhi-Burnell ‘19, Seiberg-Shao ‘20,
Gorantla-Lam-Seiberg-SHS 20, Qi-Radzihovsky-Hermele ‘20, Slagle 21, Geng-Kachru-Karch-Nally-Rayhaun ‘21, Slagle-Hsin

‘21, Luo-Spieler-Sun-Karch 22...].
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Compact Lifshitz theory

* There are even weirder global symmetries in other exotic models
motivated by condensed matter systems [Haah 2011, Yoshida 2013, Ma et al.
2020,...].

¢ Compact Lifshitz theory [Henley 1996, Moessner-Sondhi-Fradkin 2001, Vishwanath-Balents-
Senthil 2003,..., Lake-Hermele-senthil 2022]: (Here V2 is the spatial Laplacian)

L= @) +5 (P9, b~ ¢+

* This continuum theory is ambiguous [Gorantla-Lam-Seiberg-sHs 2022]. FOr
example, on a torus of length £, ¢ = 2mnx /L is a zero-energy
solution for all integers n, hence infinite ground state degeneracy.
Requires lattice regularization.
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GSD = Complexity

[Gorantla-Lam-SHS 2022]

* We discretize the space by a lattice
graph- discretize
* In a natural regularization of the ’
theory, the ground state degeneracy

(GSD) equals the number of spanning
trees of the spatial graph, which is a
common measure of complexity in
graph theory.

* UV/IR mixing: the GSD, which is an IR
observable, equals the complexity of
the UV discretization of space.

e New QFT? What is QFT?

> <
Padh
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Non-invertible Symmetries



Generalized global symmetries

Properties of Ordinary Higher-form Subsystem Non-invertible
symmetry op. symmetry symmetry symmetry symmetry
Codimension 1 > 1 > 1 =1

in spacetime

Topological yes yes not completely yes

but conserved in time
Fusion rule group group group category
Ji1X92 =93 | 91X92 =93 | 91X92 = g3 DxDT # 1
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‘“What’s done cannot be undone.”’

* Conventionally, a global symmetry is implemented by a unitary operator
acting on the Hilbert space [wigner 1931].

* |n particular, conventional symmetry transformations have inverses and
can be undone.

* |[n recent years, we saw rapid developments of a novel kind of global

symmetries: non-invertible global symmetry [Bhardwaj-Tachikawa 2017, Chang-Lin-SHS-
Wang-Yin 2018, Komargodski-Ohmori-Roumpedakis-Seifnashri 2020, ... Choi-Cordova-Hsin-Lam-SHS 2021,

Kaidi-Ohmori-Zheng 2021,...].

* It is not implemented by a unitary operator and does not have an inverse.
Yet it is an RG-flow invariant and leads to matching conditions.

e Lattice realization [Feiguin et al. 2006, Aasen-Fendley-Mong 2016, 2020, Koide-Nagoya-Yamaguchi
2021, ..]. Also known as the algebraic higher symmetry in CMT [Ji-wen 2019, kong-
Lan-Wen-Zhang-Zheng 2020].



Non-invertible symmetry in QED

* | will discuss one such non-invertible symmetry that exists in Nature — 3+1d
QED in the massless limit:

1 _
L=—F,F*" +i¥(9, —id,)y*¥

de?2 1247
* It is commonly stated that the classical U(1) 4 axial symmetry
L
‘P—>exp(7y5)LP , a~a+?2n

is broken by the ABJ anomaly quantum mechanically [adler 1969, Bell-Jackiw 1969].

* Recently, it was realized that the continuous, invertible U(1) 4 axial
symmetry is not completely broken, but it is resurrected as a discrete, non-
invertible global symmetry labeled by the rational numbers [choi-Lam-SHs 2022,
Cordova-Ohmori 2022].



QED

* The axial current jﬁ‘ = ‘T’ysy,}P obeys the anomalous conservation equation

41
d*] =HF/\F

Naively, we can define the symmetry operator

Ua(M) = exp( 6, * )

However, it is not conserved (topological) because of the anomalous conservation
equation.

Adler defined a gauge non-invariant current which is formally conserved, d x j4 = 0,

1
*jA E*jA —4—71_2Ad14

But the symmetry operator is not gauge invariant on a general three-manifold M
= la . 1
Uy (M) = exp[— 4, (xj* — 5 AdA)]



Dilemma

Operator Gauge-invariant? Conserved
(topological)?

Ua(M) = exp( 6, * j4) V4 X

Ua(M) = exp[5 6, (x j* — =5 AdA)) X v




Rational angles

* Let us be less ambitious, and assume the axial rotation angle is a
fraction:

B 21T
TN
Uzr(M) = f et : —— AdA
2n(M) = exp[P (5 * j ~ 27N 2a4)]
* The operator ﬁzl(M) is still not gauge invariant because of the
N

fractional Chern-Simons term.



Fractional quantum Hall state

[
“ AdA ))
4-7TN

* In condensed matter physics, this action is commonly used to describe the v =
1/N fractional quantum Hall effect (FQHE) in 2+1d.

* It is however not gauge invariant. Fortunately, there is a well-known fix to this
issue.

* The more precise, gauge invariant Lagrangian for the FQHE is

[N
f (E ada + % adA)

where a is a dynamical U(1) gauge field living on the 2+1d manifold M.

)

* The two actions are related by illegally integrating out a to obtain “a = — v



Back to QED

[Choi-Lam-SHS 2022, Cordova-Ohmori 2022]

* Motivated by the discussion of FQHE in 2+1d, we define a new operator
Dl/N(M) in 3+1d QED: (Easy to generalize to Dp/N with coprime p, N)

Zm
Uz_”(M) = exp [f ( AdA)] a: auxiliary field on M
N l A: bulk gauge field

omt ia g W e aan
(G *J* + 3 0da 2na )]

47TN

Diyn(M) = exp[f

* Easy to generalize to Dy, /.

* The new Oﬁerator is gauge-invariant and conserved (topological). The price
we pay is that it NOT invertible.
iN _

Dl/le)l/N = exp[9, (—ada ——ada + —(a —a)dA)] #



Non-invertible global symmetry

Operator Gauge- Conserved Invertible?
invariant? | (topological)?
Ua(M) = exp(; §, % j*) V4 X N/A

= 04 . 1

Uy (M) = exp[ $,, (x j4 — — AdA)] X V4 V4
D1(M) =

N
21TL IN ]
exp[f (=— * j4 + —ada + — adA)] \/ \/ X
M

2N 41T 2T




Electron mass

* Naturalness [‘t Hooft 1980]: Impose a global symmetry group G. The
Lagrangian should include all G-invariant terms with coefficients of
order one with no fine-tuning.

* Massless QED Lagrangian: L = —_FFH 4 i@(@u — iAM)y“LIJ

402 KUV
* The electron mass term mWYWYW violates the non-invertible global
symmetry.

* Therefore, electron is naturally massless in QED because of the non-
invertible global symmetry.

e See [Cordova-Ohmori 2022] for more discussions on naturalness in
axion physics.



‘t Hooft Naturalness

ITI2. NATURALNESS IN QUANTUM ELECTRODYNAMICS

Quantum Electrodynamics as a renormalizable model of
electrons (and muons if desired) and photons is an example of a
"natural" field theory. The parameters 2, me (and m,) may be small
independently. In particular m, (and m,) are very small at large u.
The relevant symmetry here 1s chiral symmetry, for the electron
and the muon separately. We need not be concerned about the
Adler—-Bell-Jackiw anomaly here because the photon field being
Abelian cannot acquire non—trivial topological winding numbers /.

‘t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking (1980)



U(1)43

QCD and pion decay

Choi-Lam-SHS 2022

| | UDem U)gm

* Below the electroweak scale, the massless QCD Lagrangian for the up
and down quarks has an axial global symmetry (corresponding to °)

U(1) 43 (Z) — exp(iaysos3) (Z)

* The ABJ anomaly with the electromagnetic U(1)g,, gauge symmetry
turns U(1) 43 into an infinite non-invertible global symmetry D,, /.

e The T%F A F coupling in the IR pion Lagrangian is necessary to match

this non-invertible global symmetry in QCD.

0

* To put it in the maximally offensive way, the neutral pion decays 7° —

vy because of the non-invertible global symmetry.



Conclusion

* We have discussed three generalizations of global symmetries, higher form
symmetries, subsystem symmetries, and non-invertible symmetries. Many
other generalizations.

* This more general perspective of global symmetry unifies many known
phenomena into a coherent framework.

* Generalized global symmetries and their anomalies provide an invariant
characterization of many topological phases of matter such as fractons. [John’s talk]

 More importantly, they lead to new dynamical consequences that are
otherwise obscured.

e Generalizations of the ‘t Hooft anomaly matching condition lead to nontrivial
constraints on renormalization group flows. Naturalness problems?

* New symmetries in new and old QFTs, including our Nature!
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Generalized global symmetries

Properties of Ordinary Higher-form Subsystem Non-invertible
symmetry op. symmetry symmetry symmetry symmetry
Codimension 1 > 1 > 1 =1

in spacetime

Topological yes yes not completely yes

but conserved in time
Fusion rule group group group category
Ji1X92 =93 | 91X92 =93 | 91X92 = g3 DxDT # 1

Thank you for listening!

31



Non-invertible symmetry

Snowmass meeting

at KITP in Feb.
1960s 1988- 2010 2017- 2021 l 2022 Mar 2022 May
Conserved Non-inv Non-inv Non-inv op as 3+1d gauge Non-inv sym Non-inv sym P77
charges in lines in surfaces in generalized sym theories from higher- in Nature
integrable 1+1d RCFT 2+1d TQFT form sym
systems 2+1d TQFT Constraints on RG
in 1+1d

Above | mostly focus on codim-1 non-inv op.
Many many other developments not listed.



Non-invertible symmetries in our dimensions

* Non-invertible symmetries exist in many familiar lattice and continuum quantum
systems: 3+1d Maxwell theory, Yang-Mills theory, QED, QCD, N' = 4 super Yang-
Mills...

* Some of them (but not all) arise from invertible symmetries via gauging.

* They have generalized anomalies which lead to nontrivial constraints on
renormalization group flows [choi-Cordova-Hsin-Lam-SHS 2021,2022, Kaidi-Ohmori-Zheng 2021].

* They have been used to construct new QFTs via twisted compactifications [kaidi-zafrir-
Zheng 2022].

* In quantum gravity, the no global symmetry conjecture is argued to be
generalized to the absence of invertible and non-invertible global symmetries
[Rudelius-SHS 2020, Heidenreich-McNamara-Montero-Reece-Rudelius-Valenzuela 2021, McNamara 2021].

e Other hidden symmetries in the Standard Model?
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